MicroRNAs MiR-17, MiR-20a, and MiR-106b Act in Concert to Modulate E2F Activity on Cell Cycle Arrest during Neuronal Lineage Differentiation of USSC

نویسندگان

  • Hans-Ingo Trompeter
  • Hassane Abbad
  • Katharina M. Iwaniuk
  • Markus Hafner
  • Neil Renwick
  • Thomas Tuschl
  • Jessica Schira
  • Hans Werner Müller
  • Peter Wernet
چکیده

BACKGROUND MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. METHODOLOGY/PRINCIPAL FINDINGS Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1)/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2)/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. CONCLUSIONS/SIGNIFICANCE Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1)/S transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E2F1-miR-20a-5p/20b-5p auto-regulatory feedback loop involved in myoblast proliferation and differentiation

miR-17 family microRNAs (miRNAs) are crucial for embryo development, however, their role in muscle development is still unclear. miR-20a-5p and miR-20b-5p belong to the miR-17 family and are transcribed from the miR-17~92 and miR-106a~363 clusters respectively. In this study, we found that miR-20a-5p and miR-20b-5p promoted myoblast differentiation and repressed myoblast proliferation by direct...

متن کامل

Investigating the inhibitory effect of miR-34a, miR-449a, miR-1827, and miR-106b on target genes including NOTCH1, c-Myc, and CCND1 in human T cell acute lymphoblastic leukemia clinical samples and cell line

Objective(s): microRNAs are small non-coding molecules that regulate gene expression in various biological processes. T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy accompanied with genetic aberrations and accounts for 20% of children’s and adult’s ALL. Notch signaling pathway dysregulation occurs in 60% of T-ALL cases. In the present study, we aimed to de...

متن کامل

miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting Smoothened

MicroRNA (miR)-20a, a member of the miR-17-92 cluster related to cardiac development, was obviously downregulated in myocardially differentiated P19 cells compared with normal P19 cells. Smoothened (SMO) is a member of the Hh pathway. Hh signaling induces cardiac differentiation in P19 cells, and SMO mediates the Hh pathway during embryonic development. Using bioinformatic prediction software T...

متن کامل

miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells

MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the cult...

متن کامل

Candidate microRNA Biomarkers in Human Gastric Cancer: A Systematic Review and Validation Study

Gastric cancer (GC) remains a major cause of morbidity and mortality worldwide and there is therefore a clear need to search for more sensitive early diagnostic biomarkers. We performed a systematic review of eight published miRNA profiling studies that compared GC tissues with adjacent noncancerous tissues. A miRNA ranking system was used that took the frequency of comparisons, direction of di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011